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Abstract—Currently, the de facto representational choice for
networks is graphs. A graph captures pairwise relationships
(edges) between entities (vertices) in a network. Network science,
however, is replete with group relationships that are more than
the sum of the pairwise relationships. For example, collaborative
teams, wireless broadcast, insurgent cells, coalitions all contain
unique group dynamics that need to be captured in their
respective networks.

We propose the use of the (abstract) simplicial complex to
model groups in networks. We show that a number of problems
within social and communications networks such as network-
wide broadcast and collaborative teams can be elegantly captured
using simplicial complexes in a way that is not possible with
graphs. We formulate combinatorial optimization problems in
these areas in a simplicial setting and illustrate the applicability
of topological concepts such as “Betti numbers” in structural
analysis. As an illustrative case study, we present an analysis of
a real-world collaboration network, namely the ARL NS-CTA
network of researchers and tasks.

I. INTRODUCTION

The analysis of communication, social, information, eco-
nomic and several other types of networks is almost always
based on graphs as the basic mathematical abstraction. A
(directed) graph G = (V,E) is essentially a set of (ordered)
cardinality-2 subsets (E) on a given set (V ). This restriction
to pairwise relationships renders graphs unable to capture
higher-order interactions that are distinct from the union of
pairwise interactions. In particular, the notion of a group as a
fundamental manipulable entity is missing in current network
science.

At the same time, groups occur fairly commonly in many
of these networks. For example, collaborative teams, wireless
broadcast, insurgent cells, coalitions all contain unique group
phenomena that need to be captured in their respective net-
works. Over the last decade, we have seen the emergence
of social media such as Facebook, blogs etc., topic based
grouping of information (e.g. Wikipedia) and smart phones
that facilitate group interaction. Given these trends, we contend
that network science will need to look beyond graphs for a
suitably general representation.

In this paper, we investigate the modeling of networks
using the (abstract) simplicial complex. A simplicial complex
on a set V is a family of arbitrary-cardinality subsets of
V closed under the subset operation, that is, if a set s is
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in the family, all subsets of s are also in the family. An
element of the family is called a simplex or face. Figure 1
illustrates the simplicial complex on three friends A, B, and
C in two possible behaviors: in one, they can only talk
pairwise on the phone (left), and in the other, they can both
talk pairwise and as a group (right). The group interaction
is shown as a shaded triangle representing the simplex or
face. Note that the distinction between the two situations is
not possible with graphs as a model, since (A,B,C) is not
allowed. Moreover, with simplicial complexes, attributes or
weights (such as frequency of interaction, time etc.) can be
attached not only to vertices and edges but also to the higher
dimensional faces, which, as we shall show in later sections,
is useful for many network problems.

A 

C 

B A 

C 

B 

“Face”  
(A,B,C) 

Fig. 1. The simplical complex can distinguish between three pairwise
relations (left) and (additionally) a group relationship (A,B,C) (right).

The above example may be applied to other contexts as well.
For instance, in a wireless ad hoc network, it is not possible to
discern by only looking at the graph in Figure 1 (left) whether
A, B, and C can communicate simultaneously over a shared
broadcast channel or if they have directional antennas and so
each can only talk to one other node at a time.

A natural question is: since a group decomposable into a
set of edges, why are graphs not sufficient? It is not sufficient
when there are attributes or properties of a group that are
over and above the union of binary interactions. Note that the
graph-theoretic notion of a “clique” only captures the union of
pairwise relationships, and not the higher-order aggregation as
the above examples illustrate. In some cases, the use of higher-
order aggregations provides representation and manipulation
convenience (e.g. assigning cost vector to an entire face) and
in some it brings forth new structural features (e.g. “cavities”
that we discuss later).

Simplicial complexes are well established in mathematics,
in particular algebraic topology [1], [2], and a rich body of
deep results exist on their properties. Applications to image

This paper was presented as part of the Workshop on Network Science for Communication Networks (NetSciCom)

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 887



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
APR 2011 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2011 to 00-00-2011  

4. TITLE AND SUBTITLE 
Beyond Graphs: Capturing Groups in Networks 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Army Research Laboratory,2800 Powder Mill RD,Adelphi,MD,20783- 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Presented at the Third IEEE International Workshop on Network Science For Communication Networks,
April 15, 2011 , Shanghai, China 

14. ABSTRACT 
Currently, the de facto representational choice for networks is graphs. A graph captures pairwise
relationships (edges) between entities (vertices) in a network. Network science however, is replete with
group relationships that are more than the sum of the pairwise relationships. For example, collaborative
teams, wireless broadcast, insurgent cells, coalitions all contain unique group dynamics that need to be
captured in their respective networks. We propose the use of the (abstract) simplicial complex to model
groups in networks. We show that a number of problems within social and communications networks such
as networkwide broadcast and collaborative teams can be elegantly captured using simplicial complexes in
a way that is not possible with graphs. We formulate combinatorial optimization problems in these areas in
a simplicial setting and illustrate the applicability of topological concepts such as ?Betti numbers? in
structural analysis. As an illustrative case study, we present an analysis of a real-world collaboration
network, namely the ARL NS-CTA network of researchers and tasks. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

7 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



processing have been fairly well studied (see for example [3]).
In communications networks, simplicial complexes have been
used for studying sensor network coverage[4], [5], and the
analysis of contact times in a mobile ad hoc network [6].
The problems studied in these papers are quite different
from our problem, which is to capture groups. There has
been some consideration of simplicial complexes as part of a
mathematical framework called Q-analysis to analyze general
structures [7], which some have applied to specific social
network problems [8], [9]. We are not aware of work that uses
simplicial complexes to model group phenomena in problems
across communication, social and information networks.

Why not use “hypergraphs”[10], which also allows
arbitrary-cardinality subsets? A key difference is that, unlike a
simplicial complex, the subsets (hyperedges) in a hypergraph
do not need to be closed under the subset operation. For
example, given vertices A,B,C, the set {(A,B), (A,B,C)}
is a hypergraph, but it is not a simplicial complex because of
the absence of (B,C) and (A,C). Many of the phenomena in
network science that we have encountered do exhibit subset
closure (e.g. friend group, broadcasting, collaboration, etc.),
and therefore we believe simplicial complexes are a better fit.
Further, with the closure restriction removed, some interesting
and useful properties such as “cavities” are not applicable.
Finally, hypergraphs do not allow succinct representation that
simplicial complexes can provide by just describing the highest
dimensional faces. These points notwithstanding, we believe
that hypergraphs also merit investigation since results with
simplicial complexes are not applicable to groups not closed
under the subset operation1. However, for the reasons men-
tioned above, we have chosen to first study the applicability
of simplicial complexes, leaving hypergraphs as a topic for
future work.

There are a number of problems across different network
types for which simplicial complexes offer an elegant ab-
straction. Due to space restrictions, we shall focus on two
representative problems, one in communications networks and
one in social networks and describe the applicability of sim-
plicial complexes to those in detail. Specifically, in section III,
we discuss network-wide broadcast, that is, sending a packet
from a source to all nodes in a multihop wireless network. In
particular, we show how weighted versions of a neighborhood
complex provides a model that captures the group aspect of
real-world broadcasting better than conventional graph-based
models.

In section IV, we discuss the higher-dimensional analysis
of structure and information flow in collaboration networks.
We show how concepts such as “Betti numbers” and higher
dimensional “cavities” can provide insights not possible with
graphs. In section V, we briefly list a number of other problems
in communications, social and information networks for which
a simplicial complex will be useful. Along the way, we

1A rough analogy may be made to undirected vs directed graphs. While
directed graphs are more general, undirected graphs are more popular as the
tighter fit for most applications. On the other hand, undirected graphs cannot
model all relationships.

formally state a number of optimization problems as possible
near-term research pursuits.

Finally, as a case study, we present in section VI a simplicial
model of a real-world data set. This data set is the network
of collaborations within the Network Science Collaborative
Technology Alliance (CTA) program of which this work is a
part. Using metrics unique to a simplicial model, we analyze
the various parts of the collaboration as well as the entire
network.

It is not our intention to propose simplicial complexes as a
generalized replacement for graphs, but simply as an additional
tool to be used when higher-order group dynamics need to
be captured. In the rest of this paper, we hope to convince
the reader that there are several such situations, and in these
situations, the use of simplicial complexes have the potential
to provide new insights not possible with graphs.

II. THE SIMPLICIAL COMPLEX

An abstract simplicial complex (ASC) is denoted by ∆=
(V, S) where V is a set of vertices, S is a non-empty set
of subsets (simplices) of V closed under the subset operation
(that is, for any Sk ∈ S, all subsets of Sk are also in S).
Every abstract simplicial complex has a geometric realization
as a (non-abstract) simplicial complex in a space of sufficient
dimension. This correspondence is helpful in visualization,
that is, one can think of an (abstract) simplicial complex as
lines, triangles, tetrahedra and so on “glued” together in space.
For the remainder of this document, we shall use “simplicial
complex (SC)” synonymously with “abstract simplicial com-
plex.”

A simplex or a face of an SC ∆= (V, S) is any subset s ∈ S.
The dimension of a simplex is one less than the number of
vertices in it. The dimension of a simplicial complex is the
maximum dimension of the simplices in it. A graph is a special
case of a simplicial complex, i.e., an SC of dimension 1. A
facet of a complex is a maximal face, that is, a face that is
not a subset of any other face. The i-skeleton of a simplicial
complex is the collection of all its faces of dimension ≤ i.

Fig. 2. An example simplicial complex

Figure 2 shows an example simplicial complex. The facets
are (0,1,2), (2,3,4), and (1,4,5,6), and the faces (simplices) are
all subsets of the facets, and the facets themselves. Note that
(1,2,4) is not a face even though (1,2),(1,4) and (2,4) are faces.
The dimension of this simplicial complex is 3. The 1-skeleton

888



is its underlying graph, that is, the union of all edges and
vertices (no faces).

A weighted simplicial complex (WSC) ∆= (V, S,w) where
V is a set of vertices, S is a closed set of subsets of V , and
w : S → < is a weight function. We have found very little
work on WSCs from the mathematical community, but we
have found that they nicely model many optimization problems
in communication and social networks.

The concept of Betti numbers2 can be used to distinguish
topological spaces. Intuitively, the kth Betti number Bk is the
number of unconnected (via higher dimensions) k-dimensional
surfaces. Specifically, B0 is the number of connected compo-
nents, B1 is the number of 2-dimensional “holes”, and B2 is
the number of 3-dimensional voids and so on. The simplicial
complex in Figure 2 has B0 = 1, B1 = 1 (the hole (1,2,4) in
the middle), and B2 = 0 (no voids).

We have only given the bare minimum background required
for understanding the rest of the paper. Readers interested in
learning more about simplicial complexes, Betti numbers and
algebraic topology in general are referred to [1], [2].

III. BROADCASTING IN A MULTI-HOP WIRELESS
NETWORK

The broadcast nature of the wireless channel results in a
natural grouping of nodes based on the relation “the set of
nodes that receive a packet via a given transmission”. This is
clearly closed under the subset operation (if a set of nodes
receive a packet, any subset does so as well) and therefore a
set of such “broadcast domains” can be aptly modeled as a
simplicial complex.

In a multihop wireless network (MWN)3, it is often neces-
sary to do a network-wide broadcast, that is, send a packet
from a given source to all nodes in the network multi-
hopping through intermediate nodes. Examples include clock
synchronization messages or routing control messages [11],
[12]. The network-wide broadcast problem is to determine, at
each hop in the sequence of broadcasts, the set of recipients
that should re-transmit the packet so that the packet reaches
all nodes in the most efficient manner.

Traditionally, this has been modeled using graphs as the
minimum connected dominating set4 problem[13], [14]. This,
however, does not capture many real-world needs for several
reasons. First, if the transmission needs to be reliable, that is,
acknowledged, then the cost of the tree depends upon the num-
ber of receivers as well. Second, in rate-adaptive networks,
transmissions need to use the lowest rate (highest range) that
can reach the furthest receiver, and therefore each subset of
receivers incurs a different cost. Third, if directional antennas
are used, a dominator does not reach all its neighbors in a
single transmission. Thus, what we need is a representation

2The name was coined by Henri Poincare after the Italian mathematician
Enrico Betti

3An MWN is a peer-to-peer infrastructure-less network architecture of
possibly mobile nodes which communicate over multiple hops. Examples
include mobile ad hoc networks, sensor networks, mesh networks etc.

4A dominating set of nodes is one in which every node is either in the set
or a neighbor of a node in the set.

in which each subset of possible receivers is a separate entity,
and is associated with a possibly different cost. A simplicial
complex is a natural fit for this need.

We apply the concept of a neighborhood complex, invented
by Lovasz [15]. The neighborhood complex of a graph G, de-
noted by N (G) is the set of simplices such that all vertices in a
given simplex share a common neighbor. In our case, we adapt
the notion to mean that nodes in a simplex simultaneously
receive a given transmission, that is, form a broadcast domain.
Note that in some cases, such as directional transmissions, this
may be different from the set of possible neighbors. Since
any subset of such receivers also receive the transmission at
the same time, a neighborhood complex defined thus meets
the requirement of being closed under the subset operation.
Figure 3 shows a graph (left) and its neighborhood complex
(right), with simplices labeled by the common vertex for that
simplex (ignore the rightmost figure for now). Textually, we
shall represent a simplex of a neighborhood complex as (s)[m]
where s ∈ N (G) is a simplex and m is the list of common
vertices.

1 

2 4 

5 3 

G: N(G): 

1 

2 3 

4 5 

2 3 

1 

2 

5,2 

2 

3 

3 

4,3 

Fig. 3. A graph (G) and its labeled neighborhood complex N(G)

A broadcast transmission from a node p can be targeted
to any subset s of the neighbors of p. Equivalently, in the
neighborhood complex, such a transmission “activates” the
simplex corresponding to s and all simplices in its closure
– basically, all simplices labeled p of cardinality less than
or equal to |s|. Thus a network-wide broadcast sequence
corresponds to a sequence of simplex “activations” in the
neighborhood complex. Such a sequence obviously needs to
be connected. In our model, the neighborhood simplices are
linked by the label, that is, the label of a simplex must be one
of the vertices in the simplex of a prior simplex activation
in the sequence. For example, in Figure 3, a solution to
the network-wide broadcast from node 1 would be (2,3)[1],
(1,3,4)[2], (2,5)[4] – notice that the label in every step i is part
of a simplex in some step j < i so the sequence is connected.

An alternate, and algorithmically more convenient way to
do the above is to define an auxiliary graph H according to
the conditions above and simply ask for a set of simplices
that induce a connected subgraph in H . We state the problem
below.

PROBLEM 3.1: Minimum Connected Neighborhood Cover
(MCNC): Let G be the communication graph of an MWN.
Let N (G) denote the neighborhood complex of G. Let w :
S → <+ be a cost function on simplices S ⊆ N(G). Define
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an auxiliary graph H in which the vertices correspond to
simplices in N(G) and there is an edge from vertex u to vertex
v iff there exists a vertex w ∈ S(u) for which S(v) is a subset
of the neighbors of w in G (S(x) is the simplex corresponding
to x). Find the set of simplices in N (G) of minimum total cost
that induces a connected graph in H.

What is the advantage of the above approach over the
relatively simple graph-theoretic formulation of minimum con-
nected dominating set? The power of the above lies in the fact
that an MCNC solution is likely to provide better broadcast
distribution as it is cost-aware. The cost function can be de-
fined based on the protocol characteristics and user preference
to apply to a variety of networks. Denoting by α the cost of
transmission, and by β the cost per receiver (considering, for
example ACKs, but could also include receive energy), a few
examples of cost functions are

• w(S) = α + β · |S|. This models reliable link-level
multicast where one broadcast is followed by ACKs from
each intended receiver.

• w(S) = β · |S| if |S| ≤ T1, else k ·α. This models doing
unicast if the number of neighbors is less than a threshold,
else k link-level broadcasts. This models operations in the
DARPA WNaN network [16].

We note that the number of simplices in a neighborhood
complex could be exponential. However, the subset closure
property allows us to maintain only facets, which is far
fewer. In the weighted context, not all weight functions have
polynomial-time memory, but the three discussed above do.

In sum, a generalized, cost-aware version of the network-
wide broadcast problem can be captured by a simplicial com-
plex that has, for each set of neighbor recipients, a weighted
neighborhood simplex representing the cost of sending to
that simplex. This is not possible in graphs which only have
weightable edges. Thus, using simplicial complexes, a solu-
tion for problem 3.1 yields a general, cost-sensitive, realistic
network-wide broadcast algorithm.

IV. COLLABORATION NETWORKS

A collaboration network is a pool of people organized
into a set of teams/tasks, with each collaboration working
toward a goal that helps the overall mission. Examples include
collaborative research centers, task teams within a company,
co-authorship for publications etc. Collaboration networks can
also emerge organically, for instance the network of blogs of
researchers in a specialized area.

Collaboration networks have traditionally been analyzed
using graphs ([17], [18]). However, graphs cannot distinguish
between different “orders” of collaboration. With graphs, three
separate collaborations A-B, B-C, C-A are represented the
same as a collaboration A-B-C, whereas in reality they are
much different. Simplicial complexes offer a natural way to
capture this distinction, and bring out interesting features.

The representation of a collaboration network as a simplicial
complex is straightforward – vertices represent people, and
each collaboration of k people is a simplex of dimension k−1.
A person can be in multiple simplices. Figure 2 in section II

models a collaboration network of 7 people organized into
three overlapping teams of 3, 3, and 4 members.

To illustrate the application of simplicial complexes, we
consider two example problems in collaborative social net-
works. First, consider the question: are there potentially useful
collaborations that appear to have been missed? That is, people
who appear to be “near” each other in terms of interests,
but are not collaborating directly. For instance, in Figure 2
in section II, the collaboration (1,2,4) is “missed”. Some of
these missed collaborations can be identified by “cavities” in
the topological space of the simplicial complex. The existence
of cavities is an application of Betti numbers as defined in
section II. For example, the first Betti number identifies the
number of 2-dimensional collaborations that are absent when
each possible 1-dimensional sub-collaboration is present, the
second Betti number identifies the number of 3-dimensional
collaborations that are absent although each possible subset of
2-dimensional collaborations are present and so on.

We note that depending upon how one defines missed
collaborations, there may or may not be 1-1 correspondence
between cavities and missed collaborations. At the very least
however, the use of Betti numbers identifies gaps in collabora-
tions that may merit further scrutiny, especially since tools for
computing Betti numbers are readily available. In section VI,
we shall consider a real-life example of this.

Second, consider information flow in such a collaborative
network. As information (results, event reports, opinions,
rumors) flows through a social network, it is modified by
the interactions of the people along the propagation path.
For example, suppose a new astounding theoretical result is
generated by someone in a blog collaboration network. As it
disseminates through the network, it is examined and discussed
by groups who scrutinize the result. Often, it is not possible for
a single researcher to identify a problem but the back-and-forth
discussion in a network of overlapping groups might uncover
a problem or validate the result 5. Further, it is reasonable to
assume that, up to a point, the larger the group is, the more
credible is the information coming out at the “other end”.

This idea is captured by the concept of a p-dimensional
path. A p-dimensional path is a connected sequence of sim-
plices each of which has a dimension at least p. As an example,
consider the network in Figure 4. The path dimension from 0
to 5 is 1 and from 0 to 8 is 2 – we argue that the information
flow from vertex 0 to 8 is in some sense more “robust” than
from 0 to 5 since it flows through larger groups.

It might be desirable to augment the collaboration network
to achieve a certain minimum dimensionality of all paths. This
leads to the following optimization problem.

PROBLEM 4.1: Dimension Augmentation: Given a simpli-
cial complex ∆= (V, S), and a dimension requirement P, find
the minimum number of faces to add so that between every
pair of vertices there is at least one P-dimensional path.

5A case in point is the recent P 6= NP proof attempt from Deolalikar
which was discussed in the blog network, and problems identified in few
days – if there was only email, it would have likely taken much longer.
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Fig. 4. An example weighted simplicial complex to illustrate path dimension.

V. OTHER PROBLEMS/NETWORKS

There are a number of other problem domains in which
groups arise naturally and benefit from a simplicial model.
Consider the problem of team selection from among a pool of
people. Each team can be represented as a weighted simplex
with a benefit function representing how well the individuals
within the team work with each other. The best set of teams is
then the maximum-aggregate-benefit simplicial cover. Such a
problem of team selection occurs also within communications
networks– cooperative sensing requires a team of nodes to
jointly sense portions of the spectrum so as to aid dynamic
spectrum access [19]. In this case the benefit may be a
function of mutual distances between nodes. Another domain
is cascaded cooperative diversity [20] in which the set of nodes
that coooperatively transmit a packet needs to be selected.

The neighborhood complex introduced in section III is
suitable for capturing groups that may not mutually interact
but interact through a “hub”. Networks based on social media
such as Facebook and Twitter offer great examples – for
instance, the set of all individuals subscribed to a Twitter
feed is a neighborhood simplex. The question of how long
it takes for a piece of information (or rumor) to propagate
through a network is roughly similar to the network-wide
broadcast problem discussed in section III. Analogs of the
collaboration problem discussed in section IV occur in other
domains as well – for example, the problem of target tracking
using collaborating sensors [21], with collaborations forming
faces.

Networks other than social and communication present
interesting group aspects as well. In information networks,
tightly inter-related documents or topics form groups. In [22],
document clustering has been modeled in a specific way as
a simplicial complex, but several variants are possible and
need to be explored. The set of citations in a paper form
a neighborhood complex that can be navigated much like
the broadcast problem. Economic networks, political alliances,
financial networks are other areas with possible group aspects.

VI. CASE STUDY: THE NS-CTA NETWORK

In section IV, we discussed the structure of collaboration
networks. In this section, we briefly study a real collabo-
ration network, namely the Network Science Collaborative
Technology Alliance (NS-CTA) network. Coordinated by the
Army Research Laboratory (ARL), the NS-CTA is a col-
laborative network of about 80 researchers from the fields

of communications, information and social networks, and
organized into six “centers”, each of which has a research
agenda within the broad goal of advancing network science.
Each center has a number of tasks, each task comprising 3-
7 researchers targeting a specific topic of research within the
center’s agenda. A researcher can be (and typically is) in more
than one task6.

Figure 5 shows the simplicial complex representation of one
of the centers. The vertices are researchers and each task is
a simplex (face). We used a tool called Polymake [23] for
visualizing and analyzing this network. Polymake depicts a
face of dimension k, representing a task with k+ 1 members,
as a polyhedron of dimension k projected on to a plane.

Fig. 5. Collaboration simplicial complex of a center in the NS-CTA.

We consider the problem of “missed collaborations” dis-
cussed in section IV. As discussed there, Betti numbers can be
used to identify some missed collaborations and can be readily
obtained using Polymake. We shall only mention the first three
Betti numbers – the others are trivial (0). The center shown in
figure 5 has the Betti number sequence (1,2,0). That is, it is
connected and has two 2-dimensional holes. The identification
of these holes can be made visually in case of such small
networks. For the center in Figure 5, the missed collaborations
are 2,7,6 and 2,7,10. That is, researchers 2,7, and 6 appear
close in their interests and are in pairwise collaborations, but
are missing out on the fruits of 3-way group interaction. For
larger networks, and higher-order cavity identification, we will
need computational homology techniques [24] and tools which
we are currently investigating.

We have analyzed the other five centers as well. Of the
six centers, three have Betti numbers (1,2,0), that is, each of
them is connected and has 2 holes. The other three have Betti
numbers (2,0,0), that is, each of them is disconnected into
two components with no holes. Moreover, we found that the
smaller of the two components is of cardinality 3 in all three
cases. As mentioned earlier, one of the uses of Betti numbers is
to distinguish between topological spaces. Applying this to the
data above, and thinking of the network as a topological space,

6Indeed, in a self-referential way, this paper itself stems from one such task
in the NS-CTA!
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it is interesting that it can be partitioned into two “classes”
with great topological similarity within each class. This is
all the more remarkable because the NS-CTA collaborations
were formed “organically” without any central authority, and
there was no particular difference in the rules concerning
team formation across centers. Closer analysis is needed to
determine if the topologial similarity of the three centers is the
result of some underlying phenomena or mere coincidence.

We have also analyzed the entire NS-CTA network consist-
ing of about 80 researchers, ignoring center boundaries. The
NS-CTA simplicial complex has Betti numbers of (1,18,0),
that is, it is connected and has 18 holes. Clearly, in each of
the disconnected triples in the three centers mentioned above,
there is at least one member who is also in another center,
resulting in elimination of the partitions. It also appears that
these centers “touch” each other at several places forming the
numerous inter-center holes. A “hole” is not a “deficiency” –
indeed, to make a hole the 1-skeleton (underlying graph) needs
to be sufficiently well connected. Lack of holes may indicate a
poorly connected network (especially if the first Betti number
exceeds 1), or sufficient 2-D simplices to fill the holes.

Our investigation has shown that a simplicial model allows
new and unique structural properties such as cavities and
topological similarity. Since graphs do not aggregate at higher
dimensions, these properties are beyond the scope of graphs.
Further work is needed, however, to fully understand the
applicability and adapt these tools to real-world questions.

VII. CONCLUDING REMARKS

The National Research Council (NRC) defines Network
Science as “the study of network representations of physical,
biological, and social phenomena leading to predictive models
of these phenomena”. Given the centrality of “representations”
in this definition and hence the overall endeavour, it is im-
portant that we pick the right representation early on. We
have argued that we need to look beyond graphs for the right
representation. In particular, we have proposed the (abstract)
simplicial complex as an appropriate generalization to capture
group phenomena. We have illustrated several domains in
communications and social networks in which a simplicial
complex can provide analytical insights not easily possible
with graphs.

Two broad research directions are possible in applying
simplicial complexes to network science. First, combinatorial
optimization problems that were based on graphs can now be
re-framed in the simplicial context, along the lines of problem
statements given in sections III and IV. Second, we can
bring to bear results and techniques in the field of simplicial
complexes, computational homology and in general algebraic
topology to analysis of group phenomena in networks. We
have already seen the insights from Betti numbers – but there
likely are many other concepts that are applicable.

As part of the NS-CTA program, we have just begun
investigating these topics. Apart from the work discussed
here, we have NP-hardness results and initial approximation
algorithms for some of the problems. However, these are but

a small fraction of the open research problems and promising
directions in this area that we believe that the network science
community should investigate.
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